

**P.G.SEMESTER-II  
CC- V  
Advances in Chemistry**

**Unit-I Nuclear Chemistry**  
Topic- Shell Model of Nucleus (PART - 1)

Dr. Jasmine Singh  
Assistant Professor  
Department of Chemistry  
M.B.R.R.V.Pd. Singh College  
(Maharaja College)

Ara

## **Nuclear Models**

---

There are three models of nucleus

- Liquid Drop Model
- Nuclear Shell Model
- Collective Model

Here we are going to discuss the Nuclear shell Model.

# Nuclear Shell Model

## • Definition

In nuclear physics, the **nuclear shell model** is a theoretical model to describe the **atomic nucleus (in terms of energy levels)**.

- The nuclear shell model was proposed by **Dmitry Ivanenko** in 1932 and further developed independently by several physicists such as Maria Goeppert-Mayer, Eugene Paul Wigner and J. Hans D. Jensen in 1949.
- It must be noted this model is based on the **Pauli exclusion principle** to describe the structure of the nucleus in terms of **energy levels**.

## Features of Shell Model

The important features of nuclear shell model are:

- The Shell Model is partly analogous to atomic shell model which describes the arrangements of electrons in an atom.
- The nucleons move randomly in a nucleus and collide into each other frequently in liquid drop model. The **shell model** suggests that each nucleon in a nucleus moves in a well defined orbit and hardly makes any collision. This is why this model is also called as **independent model**.
- As Nuclear Shell Model is analogous to atomic shell model so filled shells results in greater stability
- The nucleons in a nucleus obey **Pauli exclusion principle( no two nucleons may occupy same state at the same time)**. The neutrons and protons are treated separately when their states are considered . Each have its own array of available quantized states.

## Features of Shell Model

- In this model each nucleon is assumed to exist in shell just like in atomic model.
- The nuclei shell are associated with certain **Magic Numbers**.

### □ Magic Number

In nuclear physics the magic number is the “Number of nucleons ( either protons and neutrons) such that are arranged into complete shell within the atomic nucleus.

The seven most widely recognized magic numbers are 2,8,20,28,50,82,126.

The magic nuclei have special stability.

## Features of Shell Model

- In this model each nucleon is assumed to exist in shell just like in atomic model.
- The nuclei shell are associated with certain **Magic Numbers**.

### □ Magic Number

In nuclear physics the magic number is the “Number of nucleons ( either protons and neutrons) such that are arranged into complete shell within the atomic nucleus.

The seven most widely recognized magic numbers are 2,8,20,28,50,82,126.

The magic nuclei have special stability.

## Features of Magic Numbers

- If number of protons corresponds to magic numbers then we have greater numbers and stable isotopes.  
i.e Calcium has six isotopes.
- The element whose  $Z$  and  $N$  is a magic number has **abundance**.
- The **Electric quadro-pole moment** tells about the charge distribution in nucleus that is either :
  - symmetric or
  - non-symmetric.

Spherical.



When  $Q$  is less than 0 then oblate, when greater than 0 then prolate.

## Significance of Magic Numbers

- 1. The nuclei either proton number or neutron number equal to magic number are most stable as compared to other nuclei.
- 2. The number of isotopes containing magic number of protons are more than that of other nuclei. Example The number of isotopes of  $\text{Ca}(Z=20)$  is 6.
- 3. The number of naturally occurring isotones containing the magic number of neutrons are more than that of the other nuclei. Example  $N=82$  has 7 isotones  $N=80$  has 3 isotones

TO BE CONTINUED.....

The students are requested to keep studying and stay tuned till further updates regarding the content.

**THANK YOU !**

You can mail your subject related queries on...

[jasminechem1@gmail.com](mailto:jasminechem1@gmail.com)

